中文久久久字幕|亚洲精品成人 在线|视频精品5区|韩国国产一区

歡迎來(lái)到優(yōu)發(fā)表網(wǎng),期刊支持:400-888-9411 訂閱咨詢:400-888-1571股權(quán)代碼(211862)

購(gòu)物車(0)

期刊大全 雜志訂閱 SCI期刊 期刊投稿 出版社 公文范文 精品范文

數(shù)學(xué)知識(shí)總結(jié)范文

時(shí)間:2023-03-06 16:02:52

序論:在您撰寫(xiě)數(shù)學(xué)知識(shí)總結(jié)時(shí),參考他人的優(yōu)秀作品可以開(kāi)闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。

數(shù)學(xué)知識(shí)總結(jié)

第1篇

一、基本知識(shí)

(一)、數(shù)與代數(shù)

1、有理數(shù):正整數(shù)、0、負(fù)整數(shù)、分?jǐn)?shù)、

畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

絕對(duì)值:在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

2無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)

平方根:如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。一個(gè)正數(shù)有2個(gè)平方根,0的平方根為0,負(fù)數(shù)沒(méi)有平方根。求一個(gè)數(shù)a的平方根運(yùn)算,叫做開(kāi)平方,其中a叫做被開(kāi)方數(shù)。

立方根:

如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。

正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

求一個(gè)數(shù)a的立方根的運(yùn)算叫開(kāi)立方,其中a叫做被開(kāi)方數(shù)。

實(shí)數(shù):實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。

在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

(二)函數(shù)

1、概念

在一個(gè)變化過(guò)程中,發(fā)生變化的量叫變量(數(shù)學(xué)中,常常為x,而y則隨x值的變化而變化),有些數(shù)值是不隨變量而改變的,我們稱它們?yōu)槌A俊?/p>

自變量(函數(shù)):一個(gè)與它量有關(guān)聯(lián)的變量,這一量中的任何一值都能在它量中找到對(duì)應(yīng)的固定值。

因變量(函數(shù)):隨著自變量的變化而變化,且自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng)。

函數(shù)值:在y是x的函數(shù)中,x確定一個(gè)值,y就隨之確定一個(gè)值,當(dāng)x取a時(shí),y就隨之確定為b,b就叫做a的函數(shù)值

2、解析式法

用含有數(shù)學(xué)關(guān)系的等式來(lái)表示兩個(gè)變量之間的函數(shù)關(guān)系的方法叫做解析式法。這種方法的優(yōu)點(diǎn)是能簡(jiǎn)明、準(zhǔn)確、清楚地表示出函數(shù)與自變量之間的數(shù)量關(guān)系

3、圖像法

把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。這種表示函數(shù)關(guān)系的方法叫做圖象法

4、一次函數(shù)

在某一個(gè)變化過(guò)程中,設(shè)有兩個(gè)變量x和y,如果可以寫(xiě)成y=kx+b(k0)(k為一次項(xiàng)系數(shù),b為常數(shù)),那么我們就說(shuō)y是x的一次函數(shù),其中x是自變量,y是因變量。特別的,當(dāng)b=0時(shí)稱y是x的正比例函數(shù)

基本性質(zhì):

1、在正比例函數(shù)時(shí),x與y的商一定(x≠0)

2、當(dāng)x=0時(shí),b為一次函數(shù)圖像與y軸交點(diǎn)的縱坐標(biāo),該點(diǎn)的坐標(biāo)為(0,b);當(dāng)y=0時(shí),一次函數(shù)圖像與x軸相交于(﹣b/k)

k>0時(shí),圖象從左到右上升,y隨x的增大而增大。

k0:經(jīng)過(guò)第一、二、四象限

k

k

函數(shù)的解析式

像y=50-0.1x這樣,用關(guān)于自變量的數(shù)學(xué)式子表示函數(shù)與自變量之間的關(guān)系,

描述函數(shù)的常用方法,這種式子叫做函數(shù)的解析式

函數(shù)的圖象

一般地,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫縱

坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

提示

并不是所有的函數(shù)都能同時(shí)用三種表示方法表示哦

(比如氣溫與時(shí)間的關(guān)系)

一、正比例函數(shù)

一般地,兩個(gè)變量x、y之間的關(guān)系式可以表示成形如y=kx的函數(shù)(k為常數(shù),x的次數(shù)為1,且k≠0),那么y就叫做x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,即一次函數(shù)

y=kx+b

中,若b=0,即所謂“y軸上的截距”為零,則為正比例函數(shù)。

1.正比例函數(shù)的關(guān)系式表示為:y=kx(k為比例系數(shù))

當(dāng)K>0時(shí)(一三象限),K的絕對(duì)值越大,圖像與y軸的距離越近。函數(shù)值y隨著自變量x的增大而增大.

2.當(dāng)K

特點(diǎn)1:?jiǎn)握{(diào)性

特點(diǎn)2:對(duì)稱性

特點(diǎn)3:正比例特點(diǎn)4:奇函數(shù)

圖像:

正比例函數(shù)的圖像是經(jīng)過(guò)坐標(biāo)原點(diǎn)(0,0)和定點(diǎn)(1,k)兩點(diǎn)的一條直線,它的斜率是k,橫、縱截距都為0。正比例函數(shù)的圖像是一條過(guò)原點(diǎn)的直線。

正比例函數(shù)y=kx(k≠0),當(dāng)k的絕對(duì)值越大,直線越“陡”;當(dāng)k的絕對(duì)值越小,直線越“平”。

求正比例函數(shù)解析式:

正比例函數(shù)求法設(shè)該正比例函數(shù)的解析式為y=kx(k≠0),將已知點(diǎn)的坐標(biāo)代入上式得到k,即可求出正比例函數(shù)的解析式。另外,若求正比例函數(shù)與其它函數(shù)的交點(diǎn)坐標(biāo),則將兩個(gè)已知的函數(shù)解析式聯(lián)立成方程組,求出其x,y值即可。

正比例函數(shù)圖像的作法

1.在x允許的范圍內(nèi)取一個(gè)值,根據(jù)解析式求出y的值;

2.根據(jù)第一步求的x、y的值描出點(diǎn);

3.作出第二步描出的點(diǎn)和原點(diǎn)的直線(因?yàn)閮牲c(diǎn)確定一直線)。

溫馨提示:正比例函數(shù)屬于一次函數(shù),但一次函數(shù)卻不一定是正比例函數(shù)。

一次函數(shù)

知識(shí)點(diǎn)總結(jié)

一、基本概念:

1.變量:在一個(gè)變化過(guò)程中數(shù)值發(fā)生變化的量。常量:在一個(gè)變化過(guò)程中數(shù)值始終不變的量。

2.

函數(shù)定義:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。如果當(dāng)x=a時(shí)y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

3、定義域:一般的,一個(gè)函數(shù)的自變量x允許取值的范圍,叫做這個(gè)函數(shù)的定義域。

4、確定函數(shù)定義域的方法:(即:自變量取值范圍)

(1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);

(2)關(guān)系式含有分式時(shí),分式的分母不等于零;

(3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;

(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;

(5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。

5、函數(shù)解析式

用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

(或:用關(guān)于自變量的數(shù)學(xué)式子表示函數(shù)與自變量之間關(guān)系的式子叫做函數(shù)的解析式。)

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

6、函數(shù)圖像的性質(zhì):

一般地,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖像。

7、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

(1)解析法:

兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

(2)列表法:把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

(3)圖像法:用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

8、由函數(shù)解析式畫(huà)其圖像的一般步驟:

(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

9、正比例函數(shù)和一次函數(shù):所有一次函數(shù)或者正比例函數(shù)的圖像都是一條直線。

(1)正比例函數(shù)定義:

一般地,形如

y=kx(k為常數(shù),k≠0)y叫x的正比例函數(shù))。k叫做比例系數(shù)。

當(dāng)b=0時(shí),一次函數(shù)y=kx+b

變?yōu)閥=kx。正比例函數(shù)是一種特殊的一次函數(shù)。

(3)

正比例函數(shù)的圖像:y=kx(k≠0)是經(jīng)過(guò)點(diǎn)(0,0)和(1,k)的一條直線。一次函數(shù)的圖象:y=kx+b(k≠0)是經(jīng)過(guò)點(diǎn)(0,b)和的一條直線。

一次函數(shù)y=kx+b的圖象的畫(huà)法.

(5)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。

(6)根據(jù)幾何知識(shí):經(jīng)過(guò)兩點(diǎn)能畫(huà)出一條直線,并且只能畫(huà)出一條直線,即兩點(diǎn)確定一條直線,所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線即可

.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),.即橫坐標(biāo)或縱坐標(biāo)為0的點(diǎn)。

(7)函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。

(8)直線y=kx+b和直線y=kx的圖象和性質(zhì)與k、b的關(guān)系如下表所示:

(9)

b>0

b

b=0

k>0

經(jīng)過(guò)第一、二、三象限

經(jīng)過(guò)第一、三、四象限

經(jīng)過(guò)第一、三象限

圖象從左到右上升,y隨x的增大而增大

k

經(jīng)過(guò)第一、二、四象限

經(jīng)過(guò)第二、三、四象限

經(jīng)過(guò)第二、四象限

圖象從左到右下降,y隨x的增大而減小

總結(jié)如下:

(1)k>0時(shí),y隨x增大而增大,必過(guò)一、三象限。

(2)k>0,b>0時(shí),

函數(shù)的圖象經(jīng)過(guò)一、二、三象限;(一次函數(shù))

(3)k>0,b

函數(shù)的圖象經(jīng)過(guò)一、三、四象限;(一次函數(shù))

(4)k>0,b=0時(shí),

函數(shù)的圖象經(jīng)過(guò)一、三象限。

(正比例函數(shù))

(5)k

y隨x增大而減小,必過(guò)二、四象限。

(6)k0時(shí),函數(shù)的圖象經(jīng)過(guò)一、二、四象限;(一次函數(shù))

(7)k

(8)k

(正比例函數(shù))

11、直線y1=kx+b與y2=kx圖象的位置關(guān)系

0,b),(a,0)

擴(kuò)展:1.求函數(shù)圖像的k值:

(1)當(dāng)b>0時(shí),將y2=kx圖象向x軸上方平移b個(gè)單位,就得到y(tǒng)1=kx+b的圖象.

(2)當(dāng)b

11.在兩個(gè)一次函數(shù)表達(dá)式中:

直線l1:y1=k1x+b1與l2:y2=k2x+b2

k相同,b也相同時(shí),兩一次函數(shù)圖像重合;

k相同,b不相同時(shí),兩一次函數(shù)圖像平行;

k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;

k不相同,b相同時(shí),

兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。

12、特殊位置關(guān)系:直線l1:y1=k1x+b1與l2:y2=k2x+b2

兩直線平行,其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等。

兩直線垂直,其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1)。即:

13、直線平移規(guī)律:上加下減(y),左加右減(x)

1.向右平移n個(gè)單位y=k(x-n)+b

2.向左平移n個(gè)單位y=k(x+n)+b

3.向上平移n個(gè)單位y

=kx+b+n

4.向下平移n個(gè)單位y

=kx+b-n

14、待定系數(shù)法:先設(shè)待求函數(shù)的關(guān)系式(其中含未知系數(shù)),再根據(jù)條件列出方程或方程組,求出未知系數(shù),從而得到所求結(jié)果的方法。

待定系數(shù)法求函數(shù)解析式步驟:

(1)根據(jù)已知條件寫(xiě)出含有待定系數(shù)的解析式y(tǒng)=kx或者y=kx+b;

(2)將x、y的幾對(duì)值或圖象上幾個(gè)點(diǎn)的坐標(biāo)代入上述解析式,得到待定系數(shù)為未知數(shù)的方程或方程組。

(3)解方程(組)得到待定系數(shù)的值。

(4)將求出的待定系數(shù)代回所求的函數(shù)解析式,得到所求函數(shù)的解析式。

如何設(shè)一次函數(shù)解析式:

點(diǎn)斜式y(tǒng)-y1=k(x-x1)(k為直線斜率,(x1,y1)為該直線所過(guò)的一個(gè)點(diǎn))

兩點(diǎn)式(y-y1)

/

(y2-y1)=(x-x1)/(x2-x1)(已知直線上(x1,y1)與(x2,y2)兩點(diǎn))

截距式(y=-b/ax+b

a、b分別為直線在x、y軸上的截距

,已知(0,b),(a,0)

(三)確定位置

1.平面內(nèi)確定一個(gè)物體的位置需要2個(gè)數(shù)據(jù)。

2.平面內(nèi)確定位置的幾種方法:

(1)行列定位法:在這種方法中常把平面分成若干行、列,然后利用行號(hào)和列號(hào)表示平面上點(diǎn)的位置,在此方法中,要牢記某點(diǎn)的位置需要兩個(gè)互相獨(dú)立的數(shù)據(jù),兩者缺一不可。

(2)方位角距離定位法:方位角和距離。

(3)經(jīng)緯定位法:需要兩個(gè)數(shù)據(jù):經(jīng)度和緯度。

(4)區(qū)域定位法:只描述某點(diǎn)所在的大致位置。

平面直角坐標(biāo)系

1.平面直角坐標(biāo)系定義

在平面內(nèi),兩條互相(垂直)且具有公共(焦點(diǎn))的數(shù)軸組成平面直角坐標(biāo)系。其中水平方向的數(shù)軸叫(X軸)或(橫軸),向(右)為正方向;豎直方向的數(shù)軸叫(Y軸)或(縱軸),向(上)為正方向;兩條數(shù)軸交點(diǎn)叫平面直角坐標(biāo)系的(原點(diǎn))。

2.平面內(nèi)點(diǎn)的坐標(biāo)

對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)P分別向x軸、y

軸作垂線,x軸上的垂足對(duì)應(yīng)的數(shù)a叫P的(橫)坐標(biāo),y軸上的垂足對(duì)應(yīng)的數(shù)b叫P的(縱)坐標(biāo)。有序數(shù)對(duì)(a,b),叫點(diǎn)P的坐標(biāo)。

若P的坐標(biāo)為(a,b),則P到x軸距離為(|b|),到y(tǒng)軸距離為(|a|)

注意:平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo).

3.平面直角坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)特征:

(2)坐標(biāo)軸上的點(diǎn)不屬于任何象限,它們的坐標(biāo)特征

①在x軸上的點(diǎn)

(縱)坐標(biāo)為0;

②在y軸上的點(diǎn)(橫)坐標(biāo)為0;

(3)P(a,b)關(guān)于x軸、y軸、原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)特征

①點(diǎn)P(a,b)關(guān)于x軸對(duì)稱點(diǎn)P1(a,-b);

②點(diǎn)

P(a,b)關(guān)于y軸對(duì)稱點(diǎn)P2

(-a,b);

③點(diǎn)P(a,b)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P3

(-a,-b);

④若點(diǎn)P(a,b)關(guān)于一三象限角平分線對(duì)稱點(diǎn)P4

(b,a);

⑤若點(diǎn)P(a,b)關(guān)于二四象限角平分線對(duì)稱點(diǎn)P5

(-b,a);

4.平行于x軸的直線上的點(diǎn)(縱)坐標(biāo)相同;平行于y軸的直線上的點(diǎn)(橫)坐標(biāo)相同。

軸對(duì)稱與坐標(biāo)變化

(1)若兩個(gè)圖形關(guān)于x軸對(duì)稱,則對(duì)應(yīng)各點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)。

(2)若兩個(gè)圖形關(guān)于y軸對(duì)稱,則對(duì)應(yīng)各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù)。

(3)若兩個(gè)圖形關(guān)于一三象限角平分線對(duì)稱,則對(duì)應(yīng)橫坐標(biāo)為原坐標(biāo)的縱坐標(biāo),縱坐標(biāo)為原坐標(biāo)的橫坐標(biāo)。

(4)若兩個(gè)圖形關(guān)于二四象限角平分線對(duì)稱,則對(duì)應(yīng)橫坐標(biāo)為原坐標(biāo)縱坐標(biāo)的相反數(shù),縱坐標(biāo)為原坐標(biāo)的橫坐標(biāo)。

(5)將一個(gè)圖形向上(或向下)平移n(n>0)個(gè)單位,則圖形上各點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n個(gè)單位。

(6)將一個(gè)圖形向右(或向左)平移n(n>O)個(gè)單位,則圖形上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n個(gè)單位。

(7)縱坐標(biāo)不變,橫坐標(biāo)分別變?yōu)樵瓉?lái)的a倍,則圖形為原來(lái)橫向伸長(zhǎng)的a倍(a>1)或圖形橫向縮短為原來(lái)的a倍(0

第2篇

高中數(shù)學(xué)難度更大,難度在于它的深度和廣度,但如果能理清思路,抓住重點(diǎn),多實(shí)踐,變?cè)覟楸┚⒎遣豢赡?。高中?shù)學(xué)知識(shí)點(diǎn)總結(jié)有哪些你知道嗎?共同閱讀高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),請(qǐng)您閱讀!

高中數(shù)學(xué)知識(shí)點(diǎn)匯總1.必修課程由5個(gè)模塊組成:

必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統(tǒng)計(jì)、概率。

必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

必修5:解三角形、數(shù)列、不等式。

以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。

選修課程分為4個(gè)系列:

系列1:2個(gè)模塊

選修1-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖

系列2:3個(gè)模塊

選修2-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)

選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例

選修4-1:幾何證明選講

選修4-4:坐標(biāo)系與參數(shù)方程

選修4-5:不等式選講

2.重難點(diǎn)及其考點(diǎn):

重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

難點(diǎn):函數(shù),圓錐曲線

高考相關(guān)考點(diǎn):

1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和

4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

高中數(shù)學(xué)學(xué)習(xí)要注意的方法1.用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。

有位數(shù)學(xué)家曾說(shuō)過(guò):數(shù)學(xué)是用最小的空間集中了的理想。

2.要重視數(shù)學(xué)概念的理解。

高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來(lái)“味道”同以往很不一樣,解題方法通常就來(lái)自概念本身。學(xué)習(xí)概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價(jià)的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當(dāng)f(x-1)=f(1-x)時(shí),函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,而y=f(x-1)與y=f(1-x)的圖象卻關(guān)于直線x=1對(duì)稱,不透徹理解一個(gè)圖象的對(duì)稱性與兩個(gè)圖象的對(duì)稱關(guān)系的區(qū)別,兩者很容易混淆。

3.對(duì)數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個(gè)詞――“嚴(yán)謹(jǐn),創(chuàng)新”,所謂嚴(yán)謹(jǐn),就是在平時(shí)訓(xùn)練的時(shí)候,不能一絲馬虎,是對(duì)就是對(duì),錯(cuò)了就一定要承認(rèn),要找原因,要改正,萬(wàn)不可以抱著“好像是對(duì)的”的心態(tài),蒙混過(guò)關(guān)。

至于創(chuàng)新呢,要求就高一點(diǎn)了,要求在你會(huì)解決此問(wèn)題的情況下,你還會(huì)不會(huì)用另一種更簡(jiǎn)單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規(guī)方法,總愛(ài)自己創(chuàng)造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認(rèn)為是不可取的。因?yàn)槟闶紫缺仨殞W(xué)會(huì)用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當(dāng)然我們要有創(chuàng)新意識(shí),但是,創(chuàng)新是有條件的,必須有扎實(shí)的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時(shí)總愛(ài)用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬(wàn)不要繼續(xù)鉆那可憐的牛角尖啊!

4.建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。

建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。

5.多聽(tīng)、多作、多想、多問(wèn):此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽(tīng)”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問(wèn)題),也就是把您所學(xué)的,應(yīng)用到解決問(wèn)題上。

“聽(tīng)”與“作”難免會(huì)碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來(lái)就要“問(wèn)”――問(wèn)同學(xué)、問(wèn)老師或參考書(shū),務(wù)必將疑難解決為止。這就是所謂的學(xué)問(wèn):既學(xué)又問(wèn)。

6.要有毅力、要有恒心:基本上要有一個(gè)認(rèn)識(shí):數(shù)學(xué)能力乃是長(zhǎng)期努力累積的結(jié)果,而不是一朝一夕之功所能達(dá)到的。

您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對(duì)答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數(shù)學(xué),但到頭來(lái)數(shù)學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。

高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析一、端正態(tài)度,切忌浮躁,忌急于求成

在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>

(1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

(2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

(3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。

因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

二、注重教材、注重基礎(chǔ),忌盲目做題

要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。

可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。

三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃

每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。

高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。

部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正?!皶?huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮??山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。

解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

(1)把題目條件開(kāi)拓引申。

①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

(2)把題目結(jié)論開(kāi)拓引申。

(3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

3.提高解題速度,掌握解題技巧。

提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。

五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足

我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。

第3篇

2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)有哪些?高三數(shù)學(xué)一直是學(xué)習(xí)的難點(diǎn)。對(duì)于高考生來(lái)說(shuō),總結(jié)高三的知識(shí)點(diǎn)非常重要。共同閱讀2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),請(qǐng)您閱讀!

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1.對(duì)于集合,一定要抓住集合的代表元素,及元素的確定性、互異性、無(wú)序性。

中元素各表示什么?

注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性質(zhì):

(3)德摩根定律:

4.你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)

的取值范圍。

6.命題的四種形式及其相互關(guān)系是什么?

(互為逆否關(guān)系的命題是等價(jià)命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

7.對(duì)映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

(一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

8.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

(定義域、對(duì)應(yīng)法則、值域)

9.求函數(shù)的定義域有哪些常見(jiàn)類型?

10.如何求復(fù)合函數(shù)的定義域?

義域是_____________。

11.求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

12.反函數(shù)存在的條件是什么?

(一一對(duì)應(yīng)函數(shù))

求反函數(shù)的步驟掌握了嗎?

(①反解x;②互換x、y;③注明定義域)

13.反函數(shù)的性質(zhì)有哪些?

①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱;

②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

14.如何用定義證明函數(shù)的單調(diào)性?

(取值、作差、判正負(fù))

如何判斷復(fù)合函數(shù)的單調(diào)性?)

15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

值是( )

A.0B.1C.2D.3

a的最大值為3)

16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

(f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

注意如下結(jié)論:

(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

17.你熟悉周期函數(shù)的定義嗎?

函數(shù),T是一個(gè)周期。)

如:

18.你掌握常用的圖象變換了嗎?

注意如下翻折變換:

19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

的雙曲線。

應(yīng)用:①三個(gè)二次(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程

②求閉區(qū)間[m,n]上的最值。

③求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問(wèn)題。

④一元二次方程根的分布問(wèn)題。

由圖象記性質(zhì)! (注意底數(shù)的限定!)

利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

20.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

21.如何解抽象函數(shù)問(wèn)題?

(賦值法、結(jié)構(gòu)變換法)

22.掌握求函數(shù)值域的常用方法了嗎?

(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

如求下列函數(shù)的最值:

23.你記得弧度的定義嗎?能寫(xiě)出圓心角為,半徑為R的弧長(zhǎng)公式和扇形面積公式嗎?

24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

25.你能迅速畫(huà)出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫(xiě)出單調(diào)區(qū)間、對(duì)稱點(diǎn)、對(duì)稱軸嗎?

(x,y)作圖象。

27.在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

28.在解含有正、余弦函數(shù)的問(wèn)題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

29.熟練掌握三角函數(shù)圖象變換了嗎?

(平移變換、伸縮變換)

平移公式:

圖象?

30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

奇、偶指k取奇、偶數(shù)。

A.正值或負(fù)值B.負(fù)值C.非負(fù)值D.正值

31.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

理解公式之間的聯(lián)系:

應(yīng)用以上公式對(duì)三角函數(shù)式化簡(jiǎn)。(化簡(jiǎn)要求:項(xiàng)數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

具體方法:

(2)名的變換:化弦或化切

(3)次數(shù)的變換:升、降冪公式

(4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

33.用反三角函數(shù)表示角時(shí)要注意角的范圍。

34.不等式的性質(zhì)有哪些?

答案:C

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下結(jié)論:

36.不等式證明的基本方法都掌握了嗎?

(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

并注意簡(jiǎn)單放縮法的應(yīng)用。

(移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

38.用穿軸法解高次不等式奇穿,偶切,從最大根的右上方開(kāi)始

39.解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論

40.對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解?

(找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)

證明:

(按不等號(hào)方向放縮)

42.不等式恒成立問(wèn)題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問(wèn)題,或問(wèn)題)

43.等差數(shù)列的'定義與性質(zhì)

0的二次函數(shù))

項(xiàng),即:

44.等比數(shù)列的定義與性質(zhì)

46.你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

例如:(1)求差(商)法

解:

[練習(xí)]

(2)疊乘法

解:

(3)等差型遞推公式

[練習(xí)]

(4)等比型遞推公式

[練習(xí)]

(5)倒數(shù)法

47.你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。

解:

[練習(xí)]

(2)錯(cuò)位相減法:

(3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫(xiě),再與原來(lái)順序的數(shù)列相加。

[練習(xí)]

48.你知道儲(chǔ)蓄、貸款問(wèn)題嗎?

零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

若每期存入本金p元,每期利率為r,n期后,本利和為:

若按復(fù)利,如貸款問(wèn)題按揭貸款的每期還款計(jì)算模型(按揭貸款分期等額歸還本息的借款種類)

若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

p貸款數(shù),r利率,n還款期數(shù)

49.解排列、組合問(wèn)題的依據(jù)是:分類相加,分步相乘,有序排列,無(wú)序組合。

(2)排列:從n個(gè)不同元素中,任取m(mn)個(gè)元素,按照一定的順序排成一

(3)組合:從n個(gè)不同元素中任取m(mn)個(gè)元素并組成一組,叫做從n個(gè)不

50.解排列與組合問(wèn)題的規(guī)律是:

相鄰問(wèn)題捆綁法;相間隔問(wèn)題插空法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類法;至多至少問(wèn)題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī)

則這四位同學(xué)考試成績(jī)的所有可能情況是( )

A.24B.15C.12D.10

解析:可分成兩類:

(2)中間兩個(gè)分?jǐn)?shù)相等

相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來(lái),分別有3,4,3種,有10種。

共有5+10=15(種)情況

51.二項(xiàng)式定理

性質(zhì):

(3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第

表示)

52.你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎?

的和(并)。

(5)互斥事件(互不相容事件):A與B不能同時(shí)發(fā)生叫做A、B互斥。

(6)對(duì)立事件(互逆事件):

(7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

53.對(duì)某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

(5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),n=103

而至少有2件次品為恰有2次品和三件都是次品

(4)從中依次取5件恰有2件次品。

解析:一件一件抽取(有順序)

分清(1)、(2)是組合問(wèn)題,(3)是可重復(fù)排列問(wèn)題,(4)是無(wú)重復(fù)排列問(wèn)題。

54.抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;

系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

55.對(duì)總體分布的估計(jì)用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數(shù);

(3)決定分點(diǎn);

(4)列頻率分布表;

(5)畫(huà)頻率直方圖。

如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為_(kāi)___________。

56.你對(duì)向量的有關(guān)概念清楚嗎?

(1)向量既有大小又有方向的量。

在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

(6)并線向量(平行向量)方向相同或相反的向量。

規(guī)定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。

(9)向量的坐標(biāo)表示

表示。

57.平面向量的數(shù)量積

數(shù)量積的幾何意義:

(2)數(shù)量積的運(yùn)算法則

58.線段的定比分點(diǎn)

.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

高中數(shù)學(xué)最易混淆知識(shí)點(diǎn)歸納1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.

2.在應(yīng)用條件時(shí),易A忽略是空集的情況

3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?

4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區(qū)別.

6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則.

7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.

8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.

9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.

10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

12.求函數(shù)的值域必須先求函數(shù)的定義域。

13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?

14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。

若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

19.絕對(duì)值不等式的解法及其幾何意義是什么?

20.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫(xiě)上:“綜上,原不等式的解集是……”.

22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

25.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?

27.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。

)

28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。

29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

31.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

34.你還記得某些特殊角的三角函數(shù)值嗎?

35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?

36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:

(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

(3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P'(x',y'),則x=x'+hy'=y+k.

37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)

38.形如的周期都是,但的周期為。

第4篇

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)如下。

1、代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

2、幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

(來(lái)源:文章屋網(wǎng) )

第5篇

7年級(jí)數(shù)學(xué)知識(shí)點(diǎn)第一章 有理數(shù)

1.1正數(shù)和負(fù)數(shù)

以前學(xué)過(guò)的0以外的數(shù)前面加上負(fù)號(hào)“-”的書(shū)叫做負(fù)數(shù)。

以前學(xué)過(guò)的0以外的數(shù)叫做正數(shù)。

數(shù)0既不是正數(shù)也不是負(fù)數(shù),0是正數(shù)與負(fù)數(shù)的分界。

在同一個(gè)問(wèn)題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義

1.2有理數(shù)

1.2.1有理數(shù)

正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。

整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

1.2.2數(shù)軸

規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸。

數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表達(dá)。

注意事項(xiàng):⑴數(shù)軸的原點(diǎn)、正方向、單位長(zhǎng)度三要素,缺一不可。

⑵同一根數(shù)軸,單位長(zhǎng)度不能改變。

一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度。

1.2.3相反數(shù)

只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

在任意一個(gè)數(shù)前面添上“-”號(hào),新的數(shù)就表示原數(shù)的相反數(shù)。

1.2.4絕對(duì)值

一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。

一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。

在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

比較有理數(shù)的大?。孩耪龜?shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

⑵兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

1.3有理數(shù)的加減法

1.3.1有理數(shù)的加法

有理數(shù)的加法法則:

⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

⑵絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值?;橄喾磾?shù)的兩個(gè)數(shù)相加得0。

⑶一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。

加法交換律:a+b=b+a

三個(gè)數(shù)相加,先把前面兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。

加法結(jié)合律:(a+b)+c=a+(b+c)

1.3.2有理數(shù)的減法

有理數(shù)的減法可以轉(zhuǎn)化為加法來(lái)進(jìn)行。

有理數(shù)減法法則:

減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。

a-b=a+(-b)

1.4有理數(shù)的乘除法

1.4.1有理數(shù)的乘法

有理數(shù)乘法法則:

兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

任何數(shù)同0相乘,都得0。

乘積是1的兩個(gè)數(shù)互為倒數(shù)。

幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。

兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。

ab=ba

三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。

(ab)c=a(bc)

一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。

a(b+c)=ab+ac

數(shù)字與字母相乘的書(shū)寫(xiě)規(guī)范:

⑴數(shù)字與字母相乘,乘號(hào)要省略,或用“”

⑵數(shù)字與字母相乘,當(dāng)系數(shù)是1或-1時(shí),1要省略不寫(xiě)。

⑶帶分?jǐn)?shù)與字母相乘,帶分?jǐn)?shù)應(yīng)當(dāng)化成假分?jǐn)?shù)。

用字母x表示任意一個(gè)有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個(gè)式子的項(xiàng),2和3分別是著兩項(xiàng)的系數(shù)。

一般地,合并含有相同字母因數(shù)的式子時(shí),只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即

ax+bx=(a+b)x

上式中x是字母因數(shù),a與b分別是ax與bx這兩項(xiàng)的系數(shù)。

去括號(hào)法則:

括號(hào)前是“+”,把括號(hào)和括號(hào)前的“+”去掉,括號(hào)里各項(xiàng)都不改變符號(hào)。

括號(hào)前是“-”,把括號(hào)和括號(hào)前的“-”去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

括號(hào)外的因數(shù)是正數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。

1.4.2有理數(shù)的除法

有理數(shù)除法法則:

除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。

a÷b=a (b≠0)

兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。

因?yàn)橛欣頂?shù)的除法可以化為乘法,所以可以利用乘法的運(yùn)算性質(zhì)簡(jiǎn)化運(yùn)算。乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號(hào),最后求出結(jié)果。

1.5有理數(shù)的乘方

1.5.1乘方

求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當(dāng)an看作a的n次方的結(jié)果時(shí),也可以讀作a的n次冪。

負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

有理數(shù)混合運(yùn)算的運(yùn)算順序:

⑴先乘方,再乘除,最后加減;

⑵同級(jí)運(yùn)算,從左到右進(jìn)行;

⑶如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行

1.5.2科學(xué)記數(shù)法

把一個(gè)大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。

用科學(xué)記數(shù)法表示一個(gè)n位整數(shù),其中10的指數(shù)是n-1。

1.5.3近似數(shù)和有效數(shù)字

接近實(shí)際數(shù)目,但與實(shí)際數(shù)目還有差別的數(shù)叫做近似數(shù)。

精確度:一個(gè)近似數(shù)四舍五入到哪一位,就說(shuō)精確到哪一位。

從一個(gè)數(shù)的左邊第一個(gè)非0 數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字。

對(duì)于用科學(xué)記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

7年級(jí)數(shù)學(xué)知識(shí)點(diǎn)第二章 一元一次方程

2.1從算式到方程

2.1.1一元一次方程

含有未知數(shù)的等式叫做方程。

只含有一個(gè)未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實(shí)際問(wèn)題的一種方法。

解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。

2.1.2等式的性質(zhì)

等式的性質(zhì)1 等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

等式的性質(zhì)2 等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。

2.2從古老的代數(shù)書(shū)說(shuō)起——一元一次方程的討論⑴

把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

2.3從“買(mǎi)布問(wèn)題”說(shuō)起——一元一次方程的討論⑵

方程中有帶括號(hào)的式子時(shí),去括號(hào)的方法與有理數(shù)運(yùn)算中括號(hào)類似。

解方程就是要求出其中的未知數(shù)(例如x),通過(guò)去分母、去括號(hào)、移項(xiàng)、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉(zhuǎn)化,這個(gè)過(guò)程主要依據(jù)等式的性質(zhì)和運(yùn)算律等。

去分母:

⑴具體做法:方程兩邊都乘各分母的最小公倍數(shù)

⑵依據(jù):等式性質(zhì)2

⑶注意事項(xiàng):①分子打上括號(hào)

第6篇

知識(shí)點(diǎn)1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2。

2、一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2。

3、一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置

1、直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。

2、直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0。

3、直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。

4、直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。

5、直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。

知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值

1、當(dāng)x=2時(shí),函數(shù)y=的值為1。

2、當(dāng)x=3時(shí),函數(shù)y=的值為1。

3、當(dāng)x=-1時(shí),函數(shù)y=的值為1。

知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)

1、函數(shù)y=-8x是一次函數(shù)。

2、函數(shù)y=4x+1是正比例函數(shù)。

3、函數(shù)是反比例函數(shù)。

4、拋物線y=-3(x-2)2-5的開(kāi)口向下。

5、拋物線y=4(x-3)2-10的對(duì)稱軸是x=3。

6、拋物線的頂點(diǎn)坐標(biāo)是(1,2)。

7、反比例函數(shù)的圖象在第一、三象限。

知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

知識(shí)點(diǎn)6:特殊三角函數(shù)值

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知識(shí)點(diǎn)7:圓的基本性質(zhì)

1、半圓或直徑所對(duì)的圓周角是直角。

2、任意一個(gè)三角形一定有一個(gè)外接圓。

3、在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

4、在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

5、同弧所對(duì)的圓周角等于圓心角的一半。

6、同圓或等圓的半徑相等。

7、過(guò)三個(gè)點(diǎn)一定可以作一個(gè)圓。

8、長(zhǎng)度相等的兩條弧是等弧。

9、在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

10、經(jīng)過(guò)圓心平分弦的直徑垂直于弦。

知識(shí)點(diǎn)8:直線與圓的位置關(guān)系

1、直線與圓有唯一公共點(diǎn)時(shí),叫做直線與圓相切。

2、三角形的外接圓的圓心叫做三角形的外心。

3、弦切角等于所夾的弧所對(duì)的圓心角。

4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

5、垂直于半徑的直線必為圓的切線。

6、過(guò)半徑的外端點(diǎn)并且垂直于半徑的直線是圓的切線。

第7篇

2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)你知道嗎?高中數(shù)學(xué)在學(xué)習(xí)的過(guò)程中,有很多知識(shí)點(diǎn)??键c(diǎn)。共同閱讀2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),請(qǐng)您閱讀!

高考數(shù)學(xué)的答題順序是什么高考數(shù)學(xué)的答題順序:先易后難

就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

高考數(shù)學(xué)的答題順序:先熟后生

通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過(guò)這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。

高考數(shù)學(xué)的答題順序:先同后異

先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力。

點(diǎn)擊查看:高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)資料

高考數(shù)學(xué)的答題順序:先小后大

小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗

高考數(shù)學(xué)的答題順序:先點(diǎn)后面

近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6.先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。

高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)復(fù)習(xí)忌諱一

一忌“多而不精,顧此失彼”

許多同學(xué)(更多的是家長(zhǎng))為了在高考中領(lǐng)先于其它人,總是絞盡腦汁想方設(shè)法要比別人學(xué)得多,這無(wú)疑是件好事。但他們最后所采用的方法卻往往是對(duì)他們最為不利的,那就是:購(gòu)買(mǎi)和選擇大量的復(fù)習(xí)資料和講義,花去比別人多得多的時(shí)間,沒(méi)日沒(méi)夜的做,他們的精神非??少F,他們的毅力非常驚人,其效果卻讓他們自己都非常傷心失望。有些家長(zhǎng)甚至說(shuō):“我的小孩已經(jīng)盡力了,還是沒(méi)有進(jìn)步,一定是太笨了”。其實(shí),他們犯了很多科學(xué)性的錯(cuò)誤,卻不自知。

1.高中階段所學(xué)的知識(shí)具有一定的范圍,再多的復(fù)習(xí)資料、講義,也只不過(guò)是這一范圍內(nèi)的知識(shí)的重復(fù)和變形。

你所做的很多題目都代表相同的知識(shí)點(diǎn),代表相同的方法,對(duì)于那些你已經(jīng)掌握的`知識(shí)、方法,做再多的題目還是于事無(wú)補(bǔ),簡(jiǎn)單無(wú)聊的重復(fù)除了使你身陷題海,不能自拔,耗盡了你的精力不算,還使你失去了信心,因?yàn)槟惚葎e人努力,卻沒(méi)有得到相應(yīng)的回報(bào)。

2.每一套復(fù)習(xí)資料都經(jīng)過(guò)編纂人員的反復(fù)推敲,仔細(xì)研究,都很系統(tǒng)地將相應(yīng)的知識(shí)點(diǎn)按照一定的規(guī)律和方法融會(huì)于其中。

所以同學(xué)只要研究好一兩套具有代表性的復(fù)習(xí)資料,你該學(xué)的一定都能學(xué)到,該會(huì)的都能學(xué)會(huì)。

3.“丟了西瓜,撿了芝麻”的故事告訴我們,不能太貪心,這本資料也好,那本資料也不錯(cuò),好的資料太多了,同學(xué)們的精力是有限的,而題目是無(wú)限的,以有限的精力去做無(wú)限的題目,永遠(yuǎn)沒(méi)有盡頭,必然導(dǎo)致你對(duì)每一套資料都沒(méi)有很好的完成,都沒(méi)有系統(tǒng)地研究,反而會(huì)因?yàn)楦鞣N資料的風(fēng)格、體系的不同,而使你的學(xué)習(xí)失去全面性、系統(tǒng)性,多而不精,顧此失彼,是高三復(fù)習(xí)的大敵。

復(fù)習(xí)忌諱二

二忌“學(xué)而不思,囫圇吞棗”

導(dǎo)致很多同學(xué)身陷題海,不能自拔的另一個(gè)重要原因,就是“學(xué)而不思”,題目是知識(shí)的載體,有的同學(xué)做了很多題目,卻仍然沒(méi)有明白它們代表同一知識(shí)點(diǎn),不但不能舉一反三,甚至舉三不能反一,其真正的原因,是他們沒(méi)有養(yǎng)成思考、總結(jié)的習(xí)慣。華羅庚先生說(shuō)過(guò):“譬如我們讀一本書(shū),厚厚的一本,再加上我們自己的注解,就愈讀愈厚,我們自己知道的東西也就‘由薄到厚’了”?!啊畬W(xué)’并不到此為止,‘懂’并不到此為透,所謂由厚到薄是消化提煉的過(guò)程,即把那些學(xué)到的東西,經(jīng)過(guò)咀嚼、消化,融會(huì)貫通,提煉出關(guān)鍵性的東西來(lái)。”這段話充分說(shuō)明了思考在學(xué)習(xí)過(guò)程中的重要性。以下是“學(xué)而不思”的幾種具體表現(xiàn),也許你就有過(guò)這樣的經(jīng)歷。

1.上課以為自己聽(tīng)懂了,可你仍然作業(yè)不會(huì)做,去問(wèn)老師的時(shí)候,老師告訴你,這就是上課講的例題或例題的變形;總是感到有做不完的題目,覺(jué)得每個(gè)題目都很新鮮,常常遇到那種好象從未見(jiàn)過(guò)的題型;

2.從來(lái)不去想,怎樣發(fā)展自己的強(qiáng)項(xiàng),怎樣彌補(bǔ)自己的不足,只知道老師叫干什么就干什么,布置了作業(yè)就做,發(fā)了試卷就考。

3.考試的時(shí)候突然覺(jué)得這就是老師講的某個(gè)典型的東西,卻有那種話到嘴邊說(shuō)不出的感覺(jué),或者豁然開(kāi)朗、猛然醒悟的感覺(jué);

4.當(dāng)老師要你總結(jié)一類題目的解題方法和策略或要你總結(jié)某一章所學(xué)內(nèi)容的時(shí)候,你總是支支唔唔無(wú)話可說(shuō);

5.一個(gè)自己所犯的錯(cuò)誤,只是輕輕的告訴自己,下次要注意,只簡(jiǎn)單地歸結(jié)為粗心,但下次還是犯同樣的錯(cuò)誤。

學(xué)而不思,往往就囫圇吞棗,對(duì)于外界的東西,來(lái)者不拒,只知接受,不會(huì)挑選,只知記憶,不會(huì)總結(jié)。你沒(méi)有在學(xué)習(xí)過(guò)程中“加入自己的注解”,怎能做到華羅庚先生說(shuō)的“由薄到厚”,你不會(huì)“提煉出關(guān)鍵性的東西來(lái)”,就更不能“由厚到薄”,找到問(wèn)題地本質(zhì),那么,你的學(xué)習(xí)就很難取得質(zhì)的飛躍。

復(fù)習(xí)忌諱三

三忌“好高騖遠(yuǎn),忽視雙基”

很多同學(xué)都知道好高務(wù)遠(yuǎn)就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠(yuǎn)。

有的同學(xué)由于自己覺(jué)得成績(jī)很好,所以,總認(rèn)為基礎(chǔ)的東西,太簡(jiǎn)單,研究雙基是浪費(fèi)時(shí)間;有的同學(xué)對(duì)自己的定位較高,認(rèn)為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺(jué)得有困難的東西;有的同學(xué)總是嫌老師講得太簡(jiǎn)單或者太慢,甚至有的同學(xué)成績(jī)不怎么樣,也瞧不起基礎(chǔ)的東西。其實(shí),這些都是好高騖遠(yuǎn)。

最深刻的道理,往往存在于最簡(jiǎn)單的事實(shí)之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來(lái)的。同學(xué)們可以仔細(xì)地分析老師講的課,無(wú)論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識(shí)點(diǎn),無(wú)論是多簡(jiǎn)單的題目,總能指出其中所蘊(yùn)藏的科學(xué)道理,而大多數(shù)同學(xué),只聽(tīng)到老師講的是題目,常常認(rèn)為此題已懂,不需要再聽(tīng),而忽略了老師闡述“來(lái)自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬(wàn)別好高務(wù)遠(yuǎn)。

四忌“敷衍了事,得過(guò)且過(guò)”

以下是對(duì)某校2020屆高三300名同學(xué)關(guān)于作業(yè)問(wèn)題的兩項(xiàng)調(diào)查:(數(shù)值為人數(shù)比例:做到的/總?cè)藬?shù))

你做作業(yè)是為了什么?

檢測(cè)自己究竟學(xué)會(huì)了沒(méi)有占91/30.33%

因?yàn)槔蠋熞獧z查占143/47.67%

怕被家長(zhǎng)、老師批評(píng)的占38/12.67%

說(shuō)不清什么原因占28/9.33%

你的作業(yè)是怎樣完成的?

復(fù)習(xí),再聯(lián)系課上內(nèi)容獨(dú)立完成占55/18.33%

高中高三數(shù)學(xué)的知識(shí)點(diǎn)歸納一、直線與圓:

1、直線的傾斜角

的范圍是

在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與軸重合或平行時(shí),規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.

過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn)

斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、,

,① ∥ , ; ② .

直線 與直線 的位置關(guān)系:

(1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

5、點(diǎn)

到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標(biāo)準(zhǔn)方程:

.⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①

相離② 相切③ 相交

9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的`平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)

直線與圓相交所得弦長(zhǎng)

二、圓錐曲線方程:

1、橢圓:

①方程 (a0)注意還有一個(gè);②定義: |PF1|+|PF2|=2a ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2 ;

2、雙曲線:①方程

(a,b0) 注意還有一個(gè);②定義: ||PF1|-|PF2||=2a ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或 c2=a2+b2

3、拋物線

:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向; ②定義:|PF|=d焦點(diǎn)F( ,0),準(zhǔn)線x=- ;③焦半徑 ;焦點(diǎn)弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長(zhǎng)公式:

5、注意解析幾何與向量結(jié)合問(wèn)題:1、,

.(1) ;(2) .

2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為,則數(shù)量|a||b|cos叫做a與b的數(shù)量積,記作ab,即

3、模的計(jì)算:|a|=