時間:2022-11-16 23:10:41
序論:在您撰寫電力電子技術(shù)論文時,參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。
1.1利于工業(yè)生產(chǎn)的更新?lián)Q代
電力電子技術(shù)的應(yīng)用能夠讓我國的民用電力設(shè)備效果得到大幅度的提升,讓我國人民的用電質(zhì)量感受到明顯的變化。如今是一個科技化的時代,所以針對一些用電量較大的工業(yè)企業(yè)來說,電力電子技術(shù)的應(yīng)用將會有助于其改造傳統(tǒng)工業(yè)的生產(chǎn)工藝,讓企業(yè)能夠?qū)⒐ぷ餍实玫竭M一步的提升,并且穩(wěn)步的邁向機電一體化的隊伍當(dāng)中。
1.2智能化發(fā)展
我國的電力電子技術(shù)已經(jīng)進入到了一個相對成熟的階段,而國家的相關(guān)科研單位也開始著手在其中加入更為高端的科技手段。這種做法不僅有利于電力系統(tǒng)的向前發(fā)展,同時還會增加電力電子技術(shù)的使用范圍,讓其更加的智能化與人性化。
1.3電力電子技術(shù)的高頻化
伴隨著電力電子技術(shù)的廣泛使用,為了讓其能夠更好的為我國的電力系統(tǒng)服務(wù),已經(jīng)開始逐漸的對傳統(tǒng)技術(shù)手段進行了突破,將運行系統(tǒng)不斷的高頻化。這樣不但節(jié)約了企業(yè)的設(shè)備占地面積,同時還從很大程度上提升了電力系統(tǒng)的運行效率。
2電力電子技術(shù)在電網(wǎng)中的應(yīng)用現(xiàn)狀
2.1在發(fā)電系統(tǒng)中的應(yīng)用
發(fā)電系統(tǒng)是整個國家電網(wǎng)中的重中之重,那么電力電子技術(shù)在這個系統(tǒng)中的應(yīng)用也將起到至關(guān)重要的作用。其主要的功能為改善發(fā)電設(shè)備的運用效率以及調(diào)節(jié)運行系統(tǒng)中的功能效率等,其中包括發(fā)電機勵磁的控制、恒頻、以及水泵的調(diào)速等等。電力電子技術(shù)主要應(yīng)用的是晶閘管在勵磁中的價格、性能、結(jié)構(gòu)等優(yōu)勢,從而保證其能夠更完美的應(yīng)用與電力系統(tǒng)當(dāng)中。除此之外,在風(fēng)力以及水力發(fā)電機的操控當(dāng)中,電力電子技術(shù)主要依靠的是變頻電源來掌控轉(zhuǎn)子勵磁電流的轉(zhuǎn)換頻率,以保證電力能源能夠發(fā)揮出最大的有效使用功效。在我國的各大企業(yè)中,能夠制造高壓力變頻器的實屬鳳毛麟角,所以電力電子技術(shù)將有效的填補這一部分的空白。
2.2在輸電系統(tǒng)中的應(yīng)用
電力電子技術(shù)在我國電網(wǎng)的輸電系統(tǒng)中主要應(yīng)用的是柔流輸電技術(shù),這種技術(shù)能夠?qū)㈦娏ο到y(tǒng)中的電壓、功率、相位角進行有效的控制與調(diào)節(jié)。在電力能源進行輸送的過程當(dāng)中,難免會出現(xiàn)不同程度上的消耗,而這種技術(shù)的應(yīng)用將從很大程度上將其輸電能力的穩(wěn)定性進行改善。針對我國電網(wǎng)目前的情況來看,如果采取遠距離高壓直流輸電的話將會相比交流輸電降低很大一部分的損耗,因為直流輸電將避免電抗壓降的問題,并且還會降低電纜網(wǎng)線等設(shè)備的投入資金,這樣不僅能夠解決穩(wěn)定性差的問題,同時還會緩解企業(yè)的經(jīng)濟壓力。
2.3在配電系統(tǒng)中的應(yīng)用
在配電系統(tǒng)中最為重要的就是提高電力能源的質(zhì)量和供電系統(tǒng)的穩(wěn)定性。而這兩項是否能夠過關(guān)將取決與電壓、不對稱度以及頻率等相關(guān)因素的質(zhì)量能不能達到標(biāo)準(zhǔn)。而電力電子技術(shù)在國外的一些大企業(yè)當(dāng)中也取得了比較成功的成績,并且也為企業(yè)帶去了相當(dāng)可觀的經(jīng)濟收益。電力電子技術(shù)可簡稱為DFACTS技術(shù),在配電系統(tǒng)的應(yīng)用中可以被理解為是一種控制單利能源質(zhì)量的新型技術(shù)。與此同時,由于DFACTS設(shè)備同F(xiàn)ACTS設(shè)備的功能與使用方法大致相同,所以DFACTS的設(shè)備也可以被理解為是FACTS的濃縮版本。
2.4在節(jié)能環(huán)節(jié)中的應(yīng)用
節(jié)約電能大致包括兩個方面:電動機的節(jié)電潛力和電動機的調(diào)速節(jié)電技術(shù),這兩中節(jié)能方法有效的相結(jié)合才能夠形成一個比較完善的節(jié)能體系。就我國目前的形式來看,交流調(diào)速技術(shù)已經(jīng)被廣泛的應(yīng)用到了礦山以及煉金等重金屬行業(yè)中,而在國外較發(fā)達的國家中,在水泵以及風(fēng)機等設(shè)備的運行中也都相繼的應(yīng)用了交流調(diào)速技術(shù)。
3結(jié)語
通常情況下,電力電子得理論教學(xué)都是按照教科書的章節(jié)順序進行,難免枯燥乏味,高深難懂。電力電子學(xué)科涉及面比較廣,如果將電力電子學(xué)科理論劃分為多個部分會起到更好的效果。比如劃分為四大變換電路部分、器件與控制部分以及電力電子前沿技術(shù)等三部分進行教學(xué),三部分既可以先后進行也可以同時穿行。
1.分析電路盡量使用多媒體。
電力電子技術(shù)的核心就是整流、逆變、斬波和交交變換四大基本電路,在電路工作過程的分析中,通常一個電路都有多個工作狀態(tài),不同的工作狀態(tài)又分別對應(yīng)著不同的電壓電流波形,也就是說電路的工作過程往往都是動態(tài)的過程,而傳統(tǒng)的書本上的文字和原理圖是無法很好地展現(xiàn)動態(tài)過程的。這時,如果采用幻燈片等多媒體形式,可以將電路工作的動態(tài)過程很好地展現(xiàn)給學(xué)生們觀看,把書本上靜態(tài)的電路以及波形圖動起來,這樣就能夠讓學(xué)生們更好地理解電力電子電路的工作過程。與此同時,結(jié)合書本上的理論,再將不同電路的特點進行總結(jié),使同學(xué)們復(fù)習(xí)時結(jié)合著書中的理論,頭腦中聯(lián)想著多媒體演示動畫,便會在學(xué)習(xí)中事半功倍,容易記憶,提高學(xué)生的分析計算和實際解題的能力。
2.器件與控制部分應(yīng)注重練習(xí)。
電力電子器件及控制部分具有覆蓋面大、定性與定量相結(jié)合的特點,學(xué)好這一部分,就必須將概念的理解與相關(guān)的計算進行練習(xí),在習(xí)題式的教學(xué)中,不斷提高分析問題和解決問題的能力。研究生階段,各高校幾乎很少帶領(lǐng)學(xué)生做與課程相關(guān)的習(xí)題,多數(shù)學(xué)生也只有在考試的時候才有機會在試卷中解答一些問題,雖說現(xiàn)在不提倡傳統(tǒng)針對考試的題海戰(zhàn)術(shù),但是平時適當(dāng)做一些典型的練習(xí)還是有必要的,電力電子器件種類多、特點各不相同,而控制方法也有很多,甚至與自動控制原理等其他學(xué)科相關(guān)聯(lián),在教學(xué)中適當(dāng)找一些典型例題進行講解,可以讓同學(xué)們在繁雜的知識中抓住重點內(nèi)容進行突破,最終掌握這部分知識要點。
3.學(xué)生自主參與新技術(shù)教學(xué)。
電力電子技術(shù)具有發(fā)展速度快的特點,新的技術(shù)和應(yīng)用領(lǐng)域不斷出現(xiàn),加強電力電子新技術(shù)的教學(xué)可以擴展學(xué)生知識面,掌握電力電子技術(shù)發(fā)展新方向。這一部分的特點是沒有定量計算、難度不大、但對于資料的收集工作量比較大,根據(jù)這些特點,在教學(xué)中,可以將這部分安排給每個學(xué)生進行講解,在講解前每個同學(xué)查找相關(guān)資料,然后對資料進行分類總結(jié),加入自己的理解,在講解過程中既可以使用多媒體也可使用板書的形式,講解后學(xué)生之間可以相互提出問題,相互討論,形成良好的研究氛圍。在這種學(xué)生自主教學(xué)的過程中,既提高了學(xué)生查找資料的能力,也能提高學(xué)生的概括的創(chuàng)新能力,還為研究生畢業(yè)學(xué)術(shù)論文的撰寫提供了相關(guān)的經(jīng)驗。
二、實驗教學(xué)應(yīng)進行分類
電力電子技術(shù)是一個應(yīng)用性很強的一門學(xué)科,在理論教學(xué)的同時一定要有相應(yīng)的實驗來配合和補充,開設(shè)實驗課是對理論課的延伸和補充,更能夠突出應(yīng)用型學(xué)科的特色。在實驗教學(xué)上,應(yīng)分為驗證實驗、探究實驗、拓展實習(xí)三個部分進行教學(xué)。
1.驗證實驗應(yīng)緊密結(jié)合課本。
驗證性實驗的特點是對已經(jīng)有的理論進行實驗驗證,與學(xué)生的理論教學(xué)緊密銜接,通過書上的理論來指導(dǎo)實驗的操作,同時實驗的結(jié)果又可以加深學(xué)生對于書本理論的深度理解。在理論課程之后,應(yīng)當(dāng)有相應(yīng)的實驗課程相跟進,在實驗開始前,老師帶領(lǐng)學(xué)生對課本知識點進行回顧,確定實驗?zāi)康暮蛯嶒灢襟E,同學(xué)們按照實驗要求完成相應(yīng)的實驗操作,并能夠運用書本上的知識來解釋實驗中的現(xiàn)象,最后通過實驗報告的形式進行總結(jié),得出驗證性的結(jié)論。
2.鼓勵開展探究性試驗。
電力電子技術(shù)是一門正在快速發(fā)展的學(xué)科,在實驗教學(xué)中,應(yīng)當(dāng)鼓勵學(xué)生進行自主探究,通過對已有知識的學(xué)習(xí)讓學(xué)生們充分發(fā)揮想象力,制作一些相關(guān)的小制作、小發(fā)明,在探究性試驗的過程中培養(yǎng)學(xué)生的創(chuàng)新能力。學(xué)生根據(jù)自己掌握的知識,結(jié)合當(dāng)今電力電子發(fā)展的前沿技術(shù),加上自己的想象力和創(chuàng)造力,獨立設(shè)計出屬于自己的電子作品,而在探究的過程中難免會遇到一些問題,這時老師應(yīng)進行適當(dāng)指導(dǎo),給出一些方案,讓學(xué)生自主解決實際問題。平時盡可能地開放實驗室,使學(xué)生增加動手操作機會。此外還應(yīng)當(dāng)鼓勵學(xué)生參加“挑戰(zhàn)杯”等科技比賽,增加在創(chuàng)新方面的交流合作,從而學(xué)會更多解決問題的新方法。
3.拓展實習(xí)應(yīng)突出實際應(yīng)用。
在傳統(tǒng)的教學(xué)環(huán)節(jié)之外,對于電力電子技術(shù)這種應(yīng)用型很強的學(xué)科,應(yīng)適當(dāng)組織學(xué)生到某個單位進行參觀學(xué)習(xí)。學(xué)習(xí)的目的是為了應(yīng)用,當(dāng)今電力電子技術(shù)已經(jīng)應(yīng)用在了許多領(lǐng)域之中,在實驗教學(xué)中可以聯(lián)系某個具體單位進行參觀,在實際的生產(chǎn)過程中,讓學(xué)生們更加具體地了解電力電子技術(shù)的應(yīng)用。除了參觀之外,也可由老師或者學(xué)生找一些與電力電子技術(shù)應(yīng)用相關(guān)的視頻資料,分享給大家進行觀看,也可以起到非常好的效果。實習(xí)結(jié)束之后,學(xué)生以報告的形式寫出自己學(xué)到了什么或者是心得體會。這樣,理論聯(lián)系實際,對于理工科的教學(xué)是有很大幫助的。
三、總結(jié)
1.分析電路盡量使用多媒體。
電力電子技術(shù)的核心就是整流、逆變、斬波和交交變換四大基本電路,在電路工作過程的分析中,通常一個電路都有多個工作狀態(tài),不同的工作狀態(tài)又分別對應(yīng)著不同的電壓電流波形,也就是說電路的工作過程往往都是動態(tài)的過程,而傳統(tǒng)的書本上的文字和原理圖是無法很好地展現(xiàn)動態(tài)過程的。這時,如果采用幻燈片等多媒體形式,可以將電路工作的動態(tài)過程很好地展現(xiàn)給學(xué)生們觀看,把書本上靜態(tài)的電路以及波形圖動起來,這樣就能夠讓學(xué)生們更好地理解電力電子電路的工作過程。與此同時,結(jié)合書本上的理論,再將不同電路的特點進行總結(jié),使同學(xué)們復(fù)習(xí)時結(jié)合著書中的理論,頭腦中聯(lián)想著多媒體演示動畫,便會在學(xué)習(xí)中事半功倍,容易記憶,提高學(xué)生的分析計算和實際解題的能力。
2.器件與控制部分應(yīng)注重練習(xí)。
電力電子器件及控制部分具有覆蓋面大、定性與定量相結(jié)合的特點,學(xué)好這一部分,就必須將概念的理解與相關(guān)的計算進行練習(xí),在習(xí)題式的教學(xué)中,不斷提高分析問題和解決問題的能力。研究生階段,各高校幾乎很少帶領(lǐng)學(xué)生做與課程相關(guān)的習(xí)題,多數(shù)學(xué)生也只有在考試的時候才有機會在試卷中解答一些問題,雖說現(xiàn)在不提倡傳統(tǒng)針對考試的題海戰(zhàn)術(shù),但是平時適當(dāng)做一些典型的練習(xí)還是有必要的,電力電子器件種類多、特點各不相同,而控制方法也有很多,甚至與自動控制原理等其他學(xué)科相關(guān)聯(lián),在教學(xué)中適當(dāng)找一些典型例題進行講解,可以讓同學(xué)們在繁雜的知識中抓住重點內(nèi)容進行突破,最終掌握這部分知識要點。
3.學(xué)生自主參與新技術(shù)教學(xué)。
電力電子技術(shù)具有發(fā)展速度快的特點,新的技術(shù)和應(yīng)用領(lǐng)域不斷出現(xiàn),加強電力電子新技術(shù)的教學(xué)可以擴展學(xué)生知識面,掌握電力電子技術(shù)發(fā)展新方向。這一部分的特點是沒有定量計算、難度不大、但對于資料的收集工作量比較大,根據(jù)這些特點,在教學(xué)中,可以將這部分安排給每個學(xué)生進行講解,在講解前每個同學(xué)查找相關(guān)資料,然后對資料進行分類總結(jié),加入自己的理解,在講解過程中既可以使用多媒體也可使用板書的形式,講解后學(xué)生之間可以相互提出問題,相互討論,形成良好的研究氛圍。在這種學(xué)生自主教學(xué)的過程中,既提高了學(xué)生查找資料的能力,也能提高學(xué)生的概括的創(chuàng)新能力,還為研究生畢業(yè)學(xué)術(shù)論文的撰寫提供了相關(guān)的經(jīng)驗。
二、實驗教學(xué)應(yīng)進行分類
電力電子技術(shù)是一個應(yīng)用性很強的一門學(xué)科,在理論教學(xué)的同時一定要有相應(yīng)的實驗來配合和補充,開設(shè)實驗課是對理論課的延伸和補充,更能夠突出應(yīng)用型學(xué)科的特色。在實驗教學(xué)上,應(yīng)分為驗證實驗、探究實驗、拓展實習(xí)三個部分進行教學(xué)。
1.驗證實驗應(yīng)緊密結(jié)合課本。
驗證性實驗的特點是對已經(jīng)有的理論進行實驗驗證,與學(xué)生的理論教學(xué)緊密銜接,通過書上的理論來指導(dǎo)實驗的操作,同時實驗的結(jié)果又可以加深學(xué)生對于書本理論的深度理解。在理論課程之后,應(yīng)當(dāng)有相應(yīng)的實驗課程相跟進,在實驗開始前,老師帶領(lǐng)學(xué)生對課本知識點進行回顧,確定實驗?zāi)康暮蛯嶒灢襟E,同學(xué)們按照實驗要求完成相應(yīng)的實驗操作,并能夠運用書本上的知識來解釋實驗中的現(xiàn)象,最后通過實驗報告的形式進行總結(jié),得出驗證性的結(jié)論。
2.鼓勵開展探究性試驗。
電力電子技術(shù)是一門正在快速發(fā)展的學(xué)科,在實驗教學(xué)中,應(yīng)當(dāng)鼓勵學(xué)生進行自主探究,通過對已有知識的學(xué)習(xí)讓學(xué)生們充分發(fā)揮想象力,制作一些相關(guān)的小制作、小發(fā)明,在探究性試驗的過程中培養(yǎng)學(xué)生的創(chuàng)新能力。學(xué)生根據(jù)自己掌握的知識,結(jié)合當(dāng)今電力電子發(fā)展的前沿技術(shù),加上自己的想象力和創(chuàng)造力,獨立設(shè)計出屬于自己的電子作品,而在探究的過程中難免會遇到一些問題,這時老師應(yīng)進行適當(dāng)指導(dǎo),給出一些方案,讓學(xué)生自主解決實際問題。平時盡可能地開放實驗室,使學(xué)生增加動手操作機會。此外還應(yīng)當(dāng)鼓勵學(xué)生參加“挑戰(zhàn)杯”等科技比賽,增加在創(chuàng)新方面的交流合作,從而學(xué)會更多解決問題的新方法。
3.拓展實習(xí)應(yīng)突出實際應(yīng)用。
在傳統(tǒng)的教學(xué)環(huán)節(jié)之外,對于電力電子技術(shù)這種應(yīng)用型很強的學(xué)科,應(yīng)適當(dāng)組織學(xué)生到某個單位進行參觀學(xué)習(xí)。學(xué)習(xí)的目的是為了應(yīng)用,當(dāng)今電力電子技術(shù)已經(jīng)應(yīng)用在了許多領(lǐng)域之中,在實驗教學(xué)中可以聯(lián)系某個具體單位進行參觀,在實際的生產(chǎn)過程中,讓學(xué)生們更加具體地了解電力電子技術(shù)的應(yīng)用。除了參觀之外,也可由老師或者學(xué)生找一些與電力電子技術(shù)應(yīng)用相關(guān)的視頻資料,分享給大家進行觀看,也可以起到非常好的效果。實習(xí)結(jié)束之后,學(xué)生以報告的形式寫出自己學(xué)到了什么或者是心得體會。這樣,理論聯(lián)系實際,對于理工科的教學(xué)是有很大幫助的。
三、總結(jié)
一、電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。
1、整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
2、逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
3、變頻器時代
進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
二、電力電子技術(shù)的應(yīng)用
1、一般工業(yè)
工業(yè)中大量應(yīng)用各種交直流電動機。直流電動機有良好的調(diào)速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來,由于電力電子變頻技術(shù)的迅速發(fā)展,使得交流電機的調(diào)速性能可與直流電機相媲美,交流調(diào)速技術(shù)大量應(yīng)用并占據(jù)主導(dǎo)地位。大至數(shù)千kW的各種軋鋼機,小到幾百W的數(shù)控機床的伺服電機,以及礦山牽引等場合都廣泛采用電力電子交直流調(diào)速技術(shù)。一些對調(diào)速性能要求不高的大型鼓風(fēng)機等近年來也采用了變頻裝置,以達到節(jié)能的目的。還有些不調(diào)速的電機為了避免起動時的電流沖擊而采用了軟起動裝置,這種軟起動裝置也是電力電子裝置。電化學(xué)工業(yè)大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術(shù)還大量用于冶金工業(yè)中的高頻、中頻感應(yīng)加熱電源、淬火電源及直流電弧爐電源等場合。
2、交通運輸
電氣化鐵道中廣泛采用電力電子技術(shù)。電氣機車中的直流機車中采用整流裝置,交流機車采用變頻裝置。直流斬波器也廣泛用于鐵道車輛。在未來的磁懸浮列車中,電力電子技術(shù)更是一項關(guān)鍵技術(shù)。除牽引電機傳動外,車輛中的各種輔助電源也都離不開電力電子技術(shù)。電動汽車的電機靠電力電子裝置進行電力變換和驅(qū)動控制,其蓄電池的充電也離不開電力電子裝置。一臺高級汽車中需要許多控制電機,它們也要靠變頻器和斬波器驅(qū)動并控制。飛機、船舶需要很多不同要求的電源,因此航空和航海都離不開電力電子技術(shù)。如果把電梯也算做交通運輸,那么它也需要電力電子技術(shù)。以前的電梯大都采用直流調(diào)速系統(tǒng),而近年來交流變頻調(diào)速已成為主流。3、電力系統(tǒng)
電力電子技術(shù)在電力系統(tǒng)中有著非常廣泛的應(yīng)用。據(jù)估計,發(fā)達國家在用戶最終使用的電能中,有60%以上的電能至少經(jīng)過一次以上電力電子變流裝置的處理。電力系統(tǒng)在通向現(xiàn)代化的進程中,電力電子技術(shù)是關(guān)鍵技術(shù)之一??梢院敛豢鋸埖卣f,如果離開電力電子技術(shù),電力系統(tǒng)的現(xiàn)代化就是不可想象的。直流輸電在長距離、大容量輸電時有很大的優(yōu)勢,其送電端的整流閥和受電端的逆變閥都采用晶閘管變流裝置。近年發(fā)展起來的柔流輸電(FACTS)也是依靠電力電子裝置才得以實現(xiàn)的。無功補償和諧波抑制對電力系統(tǒng)有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無功補償裝置。近年來出現(xiàn)的靜止無功發(fā)生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優(yōu)越的無功功率和諧波補償?shù)男阅?。在配電網(wǎng)系統(tǒng),電力電子裝置還可用于防止電網(wǎng)瞬時停電、瞬時電壓跌落、閃變等,以進行電能質(zhì)量控制,改善供電質(zhì)量。
在變電所中,給操作系統(tǒng)提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。
4、電子裝置用電源
各種電子裝置一般都需要不同電壓等級的直流電源供電。通信設(shè)備中的程控交換機所用的直流電源以前用晶閘管整流電源,現(xiàn)在已改為采用全控型器件的高頻開關(guān)電源。大型計算機所需的工作電源、微型計算機內(nèi)部的電源現(xiàn)在也都采用高頻開關(guān)電源。在各種電子裝置中,以前大量采用線性穩(wěn)壓電源供電,由于高頻開關(guān)電源體積小、重量輕、效率高,現(xiàn)在已逐漸取代了線性電源。因為各種信息技術(shù)裝置都需要電力電子裝置提供電源,所以可以說信息電子技術(shù)離不開電力電子技術(shù)。
5、家用電器
照明在家用電器中占有十分突出的地位。由于電力電子照明電源體積小、發(fā)光效率高、可節(jié)省大量能源,通常被稱為“節(jié)能燈”,它正在逐步取代傳統(tǒng)的白熾燈和日光燈。變頻空調(diào)器是家用電器中應(yīng)用電力電子技術(shù)的典型例子。電視機、音響設(shè)備、家用計算機等電子設(shè)備的電源部分也都需要電力電子技術(shù)。此外,有些洗衣機、電冰箱、微波爐等電器也應(yīng)用了電力電子技術(shù)。電力電子技術(shù)廣泛用于家用電器使得它和我們的生活變得十分貼近。
6、其他
關(guān)鍵詞:電力電子技術(shù);開關(guān)電源
現(xiàn)代電源技術(shù)是應(yīng)用電力電子半導(dǎo)體器件,綜合自動控制、計算機(微處理器)技術(shù)和電磁技術(shù)的多學(xué)科邊緣交又技術(shù)。在各種高質(zhì)量、高效、高可靠性的電源中起關(guān)鍵作用,是現(xiàn)代電力電子技術(shù)的具體應(yīng)用。
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1.電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。
1.1整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
1.2逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3變頻器時代
進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1計算機高效率綠色電源
高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。
計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日"能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當(dāng)今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7大功率開關(guān)型高壓直流電源
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。
國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開關(guān)電源的發(fā)展趨勢
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1高頻化
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)"整流行業(yè)"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為"開關(guān)變換類電源",其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于"標(biāo)準(zhǔn)"功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。3.3數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。
3.4綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。
總而言之,電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標(biāo)志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。
參考文獻:
[1]林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992。
其具體包括以下幾方面的內(nèi)容:第一,通過對電力電子技術(shù)的應(yīng)用,已經(jīng)將傳統(tǒng)發(fā)電機直流勵磁轉(zhuǎn)化為由中頻交流勵磁和電力電子整流相結(jié)合的方法,并且在推廣應(yīng)用過程中取得了良好的效果,其運行的可靠性也得到了提高。第二,電力電子技術(shù)的應(yīng)用有效地改變了水輪發(fā)電機的變頻勵磁。發(fā)電頻率取決于發(fā)電機的轉(zhuǎn)速,采用了電力電子技術(shù)后,將水輪發(fā)電機直流勵磁轉(zhuǎn)變?yōu)榈皖l交流變頻勵磁。當(dāng)水流量減少時,提高勵磁頻率,可以把發(fā)電頻率補償?shù)筋~定,延長水輪發(fā)電機的發(fā)電周期,解決水力發(fā)電中發(fā)電機工作時間受季節(jié)性水流量影響而導(dǎo)致的頻率無法調(diào)節(jié)、浪費較多水能的問題。這對大型水力發(fā)電設(shè)施來說,具有巨大的經(jīng)濟效益。
2電力電子技術(shù)的未來發(fā)展趨勢
從近幾十年的發(fā)展歷程中我們可以看出,半導(dǎo)體的發(fā)明與應(yīng)用有效地推動了電子技術(shù)的快速發(fā)展,其中晶閘管等電力半導(dǎo)體在這一過程中發(fā)揮了重要的作用。在進入20世紀70年代后,半控型晶閘管形成由低電壓小電流到高電壓大電流的系列產(chǎn)品,被稱為第一代電力電子器件。隨著電力電子技術(shù)理論研究和半導(dǎo)體制造工藝水平的不斷提高,先后研制出GTR、GTO、功率MOSFET等自關(guān)斷全控型第二代電力電子器件。近期研制的以絕緣柵雙極晶體管(IGBT)為代表的第三代電力電子器件,開始向大容量高頻率、響應(yīng)快、低損耗的方向發(fā)展,這又是一個飛躍。步入20世紀90年代后,電力電子技術(shù)得到突飛猛進的發(fā)展,與該技術(shù)有關(guān)的產(chǎn)品也得到進一步升級,大都朝著智能化、模塊化方向發(fā)展,逐步形成了電力電子技術(shù)的三步走模式及理論的研發(fā),產(chǎn)品的研制、產(chǎn)品的應(yīng)用,成為國際科研領(lǐng)域的新星,成為經(jīng)濟社會發(fā)展的熱門行業(yè)。但是,就目前我國電力電子技術(shù)發(fā)展現(xiàn)狀來看,還不容樂觀,其中電力半導(dǎo)體器件的研發(fā)與應(yīng)用同西方發(fā)達國家相比,還存在較大的差距,還比較落后,所以,如果在21世紀國際電力電子技術(shù)迅猛發(fā)展的背景下,我國半導(dǎo)體器件的落后狀態(tài)得不到改善,將直接影響我國國民經(jīng)濟的快速發(fā)展,因此,對于我國電力電子技術(shù)的發(fā)展趨勢來說,仍然任重而道遠。
3結(jié)語
關(guān)鍵詞:電力電子技術(shù);開關(guān)電源
現(xiàn)代電源技術(shù)是應(yīng)用電力電子半導(dǎo)體器件,綜合自動控制、計算機(微處理器)技術(shù)和電磁技術(shù)的多學(xué)科邊緣交又技術(shù)。在各種高質(zhì)量、高效、高可靠性的電源中起關(guān)鍵作用,是現(xiàn)代電力電子技術(shù)的具體應(yīng)用。
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1.電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。
1.1整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
1.2逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3變頻器時代
進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1計算機高效率綠色電源
高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。
計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日"能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當(dāng)今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7大功率開關(guān)型高壓直流電源
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。
國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開關(guān)電源的發(fā)展趨勢
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1高頻化
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)"整流行業(yè)"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為"開關(guān)變換類電源",其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于"標(biāo)準(zhǔn)"功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。3.3數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。
3.4綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。
總而言之,電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標(biāo)志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。
參考文獻:
[1]林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992。